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While efficient new algorithms for interprocedural data-flow analysis have made these tech-
niques practical for use in production compilation systems,a new problem has arisen: collecting
and using interprocedural information in a compiler introduces subtle dependence among the
proceduresof a program. If the compiler dependson interprocedural information to optimize a
given module, a subsequentediting changeto another module in the program may changethe
interprocedural information and necessitaterecompilation. To avoid having to recompile every
module in a program in responseto a single editing changeto one module, we have developed
techniquesto more precisely determine which compilations have actually beeninvalidated by a
changeto the program’s source.This paper presents a general recoi-npzlatton test to determine
which proceduresmust be compiled in responseto a series of editing changes.Three different
implementation strategies, which demonstrate the fundamental tradeoff between the cost of
analysis and the precision of the resulting test, are also discussed.

Categories and Subject Descriptors: D.2.6 [Software Engineering]: Programming Environ-
ments; D.3.4[Programming Languages]: Processors—compilers,optznuzation

General Terms: Algorithms, Languages

Additional Key Words and Phrases:Interprocedural analysis and optimization, data-flow analy-
sis, recompilation analysis

1. INTRODUCTION

Traditional optimizing compilers have advanced to the point where they do
an excellent job of optimizing code within a single procedure or compilation
unit. Accordingly, code optimization research has begun to focus on interpro-
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cedural analysis and optimization. Recent work has included both faster
algorithms for some interprocedural data-flow problems and efficacy studies
of some interprocedural transformations [7, 8, 9, 13, 15, 16, 24, 25, 33]. These
techniques are also being applied in compilers that try to automatically
restructure programs to expose parallelism. In each of these areas, the goal is
to improve the efficiency of code generated for a whole program by giving the
compiler more context over which to optimize.

Unfortunately, interprocedural optimization directly conflicts with one of
the most treasured features of traditional ALGOL-like programming lan-
guages: separate compilation. Interprocedural data-flow analysis gives the
compiler facts about the naming environment in which the code will execute
at run-time and about the side effects of procedures that will be called at
run-time. Using such information makes the correctness of compile-time
decisions for one procedure dependent on the source text for other procedures.
Cross-procedural optimizations, like interprocedural register allocation and
inline substitution, have a similar effect, although they may rely on informa-
tion derived even later in the compilation process, like the specific mapping of
names to storage locations. As soon as information from other procedures is
used to make compile-time decisions, the object code produced by the com-
piler becomes a function of those other procedures. In such a system, editing
changes made to one procedure can invalidate prior compilations of other
procedures.

To produce a practical system that performs interprocedural analysis and
optimization will require a mechanism for tracking such recompilation depen-
dence, detecting when they are violated, and automatically recompiling the
necessary parts of the program. Of course, the compiler could adopt the naive
approach and recompile the entire program after a change to any single
procedure—sacrificing any possible benefit of separate compilation. The al-
ternative is to perform a recompilation analysis to determine, at compile-time,
the set of procedures that may need to be recompiled in response to editing
changes to one or more procedures in the program. The power (and success)
of such an analysis should be measured by the number of spurious recom-
pilation that it avoids—procedures that would otherwise be recompiled
unnecessarily.

This paper examines the recompilation problems introduced by the use of
interprocedural dataflow information as a basis for compile-time decisions. It
extends the work presented by Cooper et al. [17] and Torczon [32]. We
present a general approach to recompilation analysis and three specific
techniques for implementing it. The general framework is based on observing
the nature of the interprocedural sets themselves and the ways in which an
optimizer can use them. The different implementation techniques produce
recompilation tests of successively greater precision, with a concomitant
increase in the expense of the test. Each of the techniques represents a
significant improvement over recompiling the entire program.

This problem has not received much attention in the literature, primarily
because few compilers have actually computed and used interprocedural
information. For example, the PLI Optimizing Compiler trivializes the prob-
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Iem by limiting its analysis to a single compilation unit [28]. Other systems,
like the ECS project at IBM Research, appear to recompile the entire pro-
gram for each executable [3]. Some systems ignore the problem

completely—for example, the Cray FORTRAN compiler will perform inline
substitution, but does not provide the user with support for managing the
resulting recompilation problems.

There are systems that are related to this work. Feldman’s make system is
an ancestor of our system. It pioneered the idea of automatic reconstruction
based on an analysis of the internal dependence of a system [20]. However,
make requires that the programmer explicitly specify the compilation depen-
dence, while our method derives them analytically. The system proposed by
Tichy [31] and Tichy and Baker [30] analyzes the recompilation dependence
introduced through the use of include files. For each module that uses a
specific include file, it records those definitions that are actually referenced in
the module. Using this information, it can determine which modules must be
recompiled when an include file is changed. Schwanke and Kaiser suggest
that the number of routines selected for recompilation by the Tichy-Baker
approach could be further reduced if harmless inconsistencies between sepa-
rately compiled modules were not considered when determining which rou-
tines to recompile [27]. Although these systems are similar in flavor to our
approach, they do not determine if changes in the interprocedural data-flow
information for a procedure make recompilation of that procedure necessary.

Although the implementations of this work have been in the context of
systems that analyze FORTRAN, the techniques are applicable across a wide
variety of languages. They work directly with data-flow information produced
by a compiler; the complications introduced by specific language features are
thus folded into computing the base information on which our methods work.

The remainder of this paper is subdivided into eight sections. Section 2
describes our model of the compilation system. Section 3 introduces the three
specific kinds of interprocedural data-flow information addressed by our
work. Section 4 describes the general recompilation framework and presents
three instantiations of the framework. Section 5 proposes a more elaborate
instantiation of the framework that can lead to more precise recompilation
tests. Section 6 discusses optimizations that directly use interprocedural
facts. Section 7 generalizes the work to deal with multiple procedures in a
single compilation unit and to account for the effects of interprocedural
optimizations. Section 8 addresses the dual of the problem—predicting when
a recompilation might be desirable to improve the results of optimization.
Finally, Section 9 contains a summary and some conclusions.

2. COMPILATION MODEL

To simplify the remainder of this discussion, we will first present a model of
the compilation system. The techniques that we describe in this paper are
intended for use in a compiler that attempts both separate compilation and
the collection and use of interprocedural data-flow information. Such a com-
piler must be structured differently than one that supports a traditional

ACM Transactions on Programming Languages and Systems, Vol. 15. No. 3, July 1993.



370 . M. Burke and L. Torczon

r I

“e”+ “co:%::”””L

ENTRY TOOL
DATABASE

source
or TOOLS

programs Y
L J \ /

Fig. 1, Our compdationmodel

separate compilation scheme. The differences arise from two principal
requirements:

(1) The compiler must have access to information about all the procedures in
a program as it compiles each of them.

(2) The compiler must have the ability to “retract” optimizations, after the
fact, in response to changes in the interprocedural information that was
used to justify them.

Together, these observations suggest a new relationship between compiler,
source code, and programmer, depicted in Figure 1.

The entry tool provides the programmer with a means to create and modify
source text that resides in the system’s database. The entry tool can be
implemented as a language sensitive editor or some combination of editor,
version control system, and compiler front-end. A similar path must allow the
programmer to construct a representation of the program-a recipe that
specifies how to bind together individual source code modules to form a single
executable program. The recompilation tool creates an executable image for
this program. It uses information from the database to determine what must
be compiled and uses the compiler and linker as needed. The compiler has
direct access to the database for interprocedural information, as well as the
results of previous compilations. We assume that the compiler translates only
one procedure at a time; in Section 7, we show how to extend the recompila-
tion tests to larger compilation units.

The techniques described in this paper have been designed to operate in a
system structured like our model. The model is not overly restrictive. It can
accommodate an implementation in the context of a programming environ-
ment—the R‘ programming environment for FORTRAN is an example [10].
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Similarly, an implementation within a more conventionally structured com-

piler can fit the model—the PTRAN analysis system for FORTRAN is an
example [2]. Both of these systems implement recompilation analysis using
techniques described in this paper.

3. INTERPROCEDURAL INFORMATION

Familiarity with interprocedural data-flow information is a prerequisite to
understanding the recompilation tests, so we begin with some background.
Interprocedural information provides the compiler with knowledge about the
run-time conditions under which a procedure will actually be invoked and
about the impact of executing other procedures on the run-time values
of variables in the procedure being compiled. We are concerned with three
distinct interprocedural phenomena: aliasing, side effects, and constant prop-
agation.

Aliasing occurs when two or more names, at some point in a program, refer
to the same storage location. Because an assignment actually modifies both
the name and all of its aliases, the compiler needs reasonably precise
information about aliases.1 We limit our consideration to the interprocedural

aliases generated by the call-by-reference parameter mechanism. For exam-
ple, when a variable u is passed by reference at a call site to a formal
parameter x, u and x become aliases of each other if v is also visible inside
the called subroutine. Two variables are potential aliases in procedure p if
they refer to the same storage location in some execution instances of p (i.e.,
the variables are aliased along some, but not necessarily all, execution paths
leading to p). The compiler can compute, for each procedure p, a set ALIAS( p )

containing those pairs of names that are potentially aliased in p [5A, 14]. In
the absence of such information, the compiler must assume that all formal
parameters and global variables are potentially aliased. In practice, this
eliminates opportunities for optimizations involving those variables.

Side-effect summary information describes the effects of executing a proce-
dure call on the values of variables. At a call site, executing the body of the
called procedure can both reference and change the values of individual
variables. Since the compiler relies on derived knowledge about the values of
variables to determine the safety and profitability of optimizations, the
impact of a procedure call on the values of variables in the calling procedure
must be considered. The compiler uses this information to sharpen its analy-
sis within a single procedure. In the absence of precise information, the
compiler must assume that the call both modifies and uses every variable
available to it. Using such worst case assumptions decreases the accuracy of
the data-flow information computed for the calling procedure, potentially
inhibiting optimization within that procedure.

1Strictly speaking, the FORTRAN standard permits the compiler to ignore aliasing. The
standard contains a restriction that neither of the two aliases may be modified in a standard-
conformingprogram [5]. Nevertheless,many compilers attempt to trace aliasesbecauseinforma-
tion about potential aliasescan be useful as a diagnostic aid to the programmer and becausethe
resulting systemsachievea higher level of predictability than the standard requires.
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In our model system, the compiler will annotate each call site e in a
program with two sets, MOD(e) and REF( e).2 The former contains all variables
that might be modified as the result of executing e, while the latter contains
all those variables whose values might be referenced as the result of execut-
ing e. For example, in traditional available expression analysis, a procedure
call must be assumed to kill every expression involving either a global
variable or an actual parameter. But if the compiler encounters an expression
v that is available immediately before call site e and it determines that none
of the constituent variables of v are in MOD(e), then it can assume safely that
u is still available after e.

In large programs, information is often passed between procedures in the
form of constant-valued actual parameters or global variables. This is partic-
ularly common in numerical programs that incorporate modules from stan-
dard libraries such as LINPACK [ 19], and in programs where the dimensions
of major data structures are stored in variables to simplify later modification.
Interprocedural constant propagation attempts to identify formal parameters
and global variables that will have the same known constant value on each
invocation of a procedure within a given program. Finding a precise solution
to the general constant propagation problem is undecidable [22] and the
usual approximate constant propagation problem is intractable in an inter-
procedural setting [23]. However, a useful subset of the complete and precise
set of interprocedural constants can still be profitable for the optimizer. The
algorithms for this problem proposed to date compute approximations to the
sets of constant-valued parameters and global variables [7, 9, 32, 34]. In our
model system, the compiler computes, for each procedure p in the program, a
set CONSTANTS(P) of constants known to hold on entry to p. Elements of
CONSTANTS(p) are pairs of the form (x, u), where x is the name of a formal
parameter or global variable and v is its known constant value.

As an example, consider the program fragment shown in Figure 2. Assum-
ing that all of the relevant statements are shown, the aliasing and constants
sets for its procedures would be:

Procedure ALIAS GONSTANTS

a 0 0
b 0 {(P2,17)]

c {( X,P3)} {(P4,17)}.

The potential alias for procedure c arises when call site a passes the global
variable x as an actual parameter. The constants come about from passing

2For consistencywith the rest of the literature on interprocedural data-flow analysis, we will
call this set REF, even though we have used the name USEin the past. USEappearsin several
sourcesas the set of variables whose values can be read before modification. REF ignores the
issue of whether or not a modification intervenes between the call site and the first use m a
called procedure,Thus, the REF set is inherently flow-insensitive, while the USEset is inherently
flow-sensitme.
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program a subroutine b (pl, p2) subroutine c (p3, p4)
integer x,y, z,vl, v2 integer pl, p2 integer x,y,z,p3,p4
common/global/x,y,z . . . common/global/x,y,z

. . . 7: call c(pl, p2) . . .
V2 = 17 p2=pl*3 p3=p4*2

a: call C(X, v2) . . . . . .

end end

P: ““”call b(vl, v2)

. . .
V2 = V2 * x

. . .
end

Fig.2. Example program fragment.

Data-flow Flow Flow

problem Type type Direction

Global common
AVAIL I all-path forward

subexpressions

Code hoisting VERYBUSY I all-path backward

Global constant
REACH I

augmented
forward

propagation any-path

Register store
LNE II any–path backward

elimination

Fig.3. Summary of examples.

the constant valued variable V2 asan actualat a and
value through to procedure c. The summary sets for
would be:

Call site MOD REF

a {x} {V2}

P {V1,V2} {V1,V2}

Y {pi} {p2}.

p; y simply passes the
the program fragment

The only statements that either modify oruse the value ofa variable are the
three assignments. The MOD and REF information arises from the assign-
ments in procedures b and c, along with parameter bindings at the various
call sites.

4. THE GENERAL FRAMEWORK

We have formulated our techniques for recompilation analysis as a test that
determines when a procedure must be recompiled. All of our techniques apply
the same test; they compare the current interprocedural information for a
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procedure against previously recorded annotation sets. The annotation sets
contain those interprocedural facts that can be true without invalidating the
procedure’s previous compilation. Our specific implementation techniques
differ in the precision with which they assign values to these annotation sets.
We attach the following sets to the program’s call graph:

(1) MayBeAlias(p), for each procedure p—the set of alias pairs that are
allowed without forcing a recompilation. If a change adds a pair to
ALIAS(p) that is not in MayBeAlias( p ), recompilation is required.

(2) MayMod(e), for each call graph edge e—the set of variables that maybe
modified as a side effect of the call without forcing a recompilation. If a
change adds a variable to MOD(e) that is not in MayMod( e), recompila-
tion is required.

(3) MayRef(e), for each call graph edge e—the set of variables that may be
used as a side effect of the call without forcing a recompilation. If a
change adds a variable to REF(e ) that is not in MayRef(e), recompilation
is required.

(4) MustBeConstant( p), for each procedure p—the set of constant pairs that
must hold on entry to procedure p if recompilation is to be avoided. If
M x, v) = MustBeCorzstant( p ) that is not in CONSTANTS(p), recompilation
is required.

Given these sets, the recompilation test can be expressed quite simply. A
procedure p must be recompiled if either p changed or the interprocedural
information associated with p changed and any of the following are true:

(a) ALIAS(p) – MayBeAlias( p) # 0,

(b) Mode) – MayMod(e) + 0, for any call site e in p,

(c) REF(e) – MayRef(e) + 0, for any call site e in p, and

(d) MustBeConstant( p) - CONSTANTS(p) # D.

Set subtraction is defined so that a G (X-Y) if and only if a is a member of X
and not Y.

To construct a list of procedures needing recompilation, the recompilation
tool first initializes the list to include every procedure where a nontrivial
editing change has been made. Trivial changes do not alter the code gener-
ated for the procedure; this includes format changes or changes to comments.
Next, it updates the program’s ALIAS, MOD, REF, and CONSTANTS sets. (Ideally,
incremental techniques should be used to update these sets [6, 11, 12].)
Whenever this update changes the value of one of these sets, the compiler
applies the appropriate test. If the test indicates that recompilation is neces-
sary, the corresponding procedure is added to the recompilation list. Because
the analyzer only tests sets that change during the incremental update, the
test requires a number of set operations proportional to the size of the region
of changed data-flow information.
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As an example, consider the following assignment of values to the annota-
tion sets. For each procedure p let

MayBeAlias( p ) = 0 and

Mz@BeConstant( p) = {(x, Q ), for all x declared in the program},

where x ranges over the parameters and global variables of p and Q is a
constant value that appears nowhere in the program. For each call site e let

MayMod(e) = 0 and

MayRef(e) = 0.

With these annotation sets, the compiler will recompile every procedure
where either the source text or some associated interprocedural set has
changed. It will not recompile procedures for which the information is un-
changed because the test is not applied at those procedures. Hence, this test
is a slight improvement over the naive approach of recompiling every proce-
dure.

Consider the impact of deleting the assignment statement from procedure
b in the example program. To determine which procedures must be recom-
piled, the analyzer begins with b, the changed procedure. After updating the
interprocedural information, it discovers that only two sets have changed:
MOD( /3) = {vI} and REF( ~ ) = {v2}. Because sets associated with procedure a

have changed, it applies the test to a and slates it for recompilation. Since
none of the sets associated with c have changed, the analyzer ignores c.
Thus, it determines that only a and b must be recompiled.

The effectiveness of the testing procedure used by the recompilation tool
depends entirely on the values assigned to MayBeAlias, MayMod, MayRef,

and MustBeConstant. To improve the precision of the test involves expanding
MayBeAlias, MayMod, and MayRef to include more allowed facts, or shrink-
ing MustBeConstant to exclude more facts. Three instantiations of this
general framework are presented in the following sections. The methods are
presented in increasing order of complexity; each successive method gives
rise to a recompilation analysis of improved precision. Two simple methods
for constructing conservative approximations to precise annotation sets are
described in the next two subsections. They rely on information that the
compiler produces when computing interprocedural information. Sections 5
and 6 discuss a technique for precisely computing MayBeAlias, MayMod,

MayRef, and MustBeConstant. This technique is substantially more complex
than the other methods described; it requires that the compiler produce
annotation sets that indicate which interprocedural facts it relied upon when
performing optimizations.

4.1 Most Recent Compilation

Our first approach to computing the annotation sets simply remembers the
values of ALIAS, MOD, REF and CONSTANTSused in the most recent compila-
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tion of the procedure. In other words, whenever we compile a procedure p, we

set

(1) MayZ3eAlias( p ) = ALIASOLD( P),

(2) Mciyllod(e) = MODOLD(e), for each call site e in p,

(3) Mayl?ef(e) = REFOLD(e), for each call site e in p, and

(4) MustBeConstant( p) = CONSTANTSOLD(P).

These annotation sets yield the following recompilation tests:

(a) ALIAS~~W( p) – ALIASOLD(P) = 0,

(b) MOD~~W( e) – MoDo~~(e) + 0, for any call site e in p,

(c) REFNEW(e) – REFoLD(e) + @, for any call site e in p, and

(d) CONSTANTSOLD(p) – CONSTANTSNEW(P) # @

where OLD indicates interprocedural information associated with the proce-
dure when it was last compiled and NEW indicates interprocedural informa-
tion that has been updated for the current compilation of the procedure.

This set of assignments reveals the principles underlying the recompilation
tests. The summary and aliasing sets identify events whose occurrence
cannot be ruled out by the analysis. For example, if a variable is in the MOD
set for a given call site, the compiler must assume that it may be modified,
but if a variable is absent from the same set, the compiler may safely assume
that the value of that variable will be unchanged upon return from the call.
In other words, in considering the ALIAS, MOD, and REF sets, the compiler can
only depend on what is not in the sets. If an optimization is safe when a
variable is present in one of these sets, that optimization will still be safe if
the variable is removed because the compiler must have already considered
the possibility that the associated event might not occur. Hence, changes in
these sets necessitate recompilation only when they expand the sets. Thus, a
deletion cannot invalidate the correctness of previous compilations, although
it can create a new opportunity for optimization. This principle motivates
tests (a), (b), and (c).

On the other hand, the CONSTANTS(p) set contains facts that are true on
every path leading to an invocation of p. Thus, if a pair (x, u) is in CoN-
STANTS(p ), the compiler can rely on x having value u on entry to p and can
replace references to x, on paths where x is unmodified, with the constant
value u. If a subsequent editing change removes (x, u) from CONSTANTS(p),
this forward substitution by the constant value is invalidated. Thus, remov-
ing a fact from CONSTANTS(p) may mandate a recompilation. An addition to
CONSTANTS(p) cannot invalidate a previous compilation, but it can open up
new opportunities for optimization. This provides the rationale for test (d).

Consider once again the impact of deleting the assignment statement from
procedure b in our example, assuming that annotation sets have been gener-
ated using information from the most recent compilation. The analyzer
repeats the steps described earlier, placing b on the recompilation list be-
cause of the editing change and applying the test to procedure a because of
changes to MOD( /3) and REF( ~). The test indicates that procedure a need not
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be recompiled, since both of the changes are deletions from flow-insensitive
summary sets. Thus, with these annotation sets, the same testing procedure
limits the recompilation list to procedure b.

4.2 APPEARS Information

Although the direct use of information from the most recent compilation
yields a recompilation test that is significantly better than the naive ap-
proach, it fails to take full advantage of the information that the compiler
could make available. For example, the test from Section 4.1 will recompile a
procedure whenever a variable is added to its MOD set, even if that variable
does not appear in any executable statement in the procedure. Determining
which variables actually appear in the procedure leads immediately to an
improved test. The compiler can easily produce the additional information
needed to support such a scheme. The sets must be computed anyway as part
of the initial information for computing the MOD and REF sets.

To describe the annotation sets for this improved test, we define three
additional sets. For a procedure p, APPEARS(p) is the set of variables either
used or modified inside p. If the only occurrence of a variable inside p is as

an actual parameter at some call site in p, then the variable need not be
included in APPEARS(p). APPEARS’(p) is defined to be the set of all variables
either used or modified in p or some procedure invoked as a result of
executing p. Both APPEARS(p) and APPEARS+(p) can be computed trivially
from information produced in the summary computation. Finally, the set
ALIASAPPEARS(p ) describes pairs of variables, where one element of the pair
appears locally in p and the other element appears in p or one of the
procedures that can be executed as a result of invoking p.3 This set is defined
as

ALIASAPPEARS(p) = {(x, y)l XGAPPEARS(p) and y ~AP1’EARS+(P)}.

Given these sets, the annotation sets at compile time can be computed as
follows:

(1) MayBeAlias(p) = ALIASOLD(p) u ALIASAPPEARS( p),

(2) MayMod(e) = MODoLD(e) U APPEARS(p), for each e in p,

3Note that when dealing with aliased pairs of variables, it is important to consideraliasesthat
can arise between a variable in p and a variable in a procedure q invoked either directly or
indirectly by p. ALIASAPPEARS(p ) accounts for all such aliases that could arise in future
compilations.However, in most compilersthat employ interprocedural information, the recompi-
lation test for ALIAS information would be used in conjunction with the recompilation tests for
MOD and REF information. In this case,the AIJAS test could simply determine whether or not
both members of the alias pair were in APPEARS(p) and avoid computing the more complex
ALIASAPPEARS( p ) information. The resulting tests would correctly detect the necessaryrecompi-
lation becauseadding an alias between x G APPEARS(p)and y G APPEARS(9)would cause x to
be added to the MOD and/or REF sets for the call invoking q from p. The MOD and REF
recompilation tests would then determine that p should be recompiled.
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(3) MczyRe~(e) = REFo~~(e) U APPEARS(p), for each e in p, and

(4) ~~stBeCOnstalLt( p)={(~, z~)~CONsT~TSo.~ (p)l~ ~APPEA@P)}.

Substituting these annotation sets into the recompilation tests in Section 4
yields the following recompilation tests:

(a) (ALIASNEW( p ) – ALIASoLD(p )) n ALIASAPPEARS(P) + 0,

(b) (MoDNEw(e) – MODOLD(e)) n ApPEMs(p) # 0, for any call site e in p,

(c) (REFN~w(e) – REFoLD(e)) n APPEARS(p) + @, for any call site e in p, and

(d) {(n, U) ● (CONSTANTSo~.(p) – CONSTANTS~~W(p )) I n ● APPEARS(p)} + 0.

Note that the tests have been refactored to avoid instantiating sets like

APPEARS(p) and ALIASAPPEARS( p ). These tests are currently employed in the
R” programming environment [18]. In practice, they have proven to be both
efficient and effective.

Computing the annotation sets from these definitions eliminates spurious
recompilation that arise from information about irrelevant variables. In
practice, this is important—procedures often contain declarations for global
variables that they never reference. FORTRAN codes often contain large
COMMON blocks that define many global variables; a given procedure may
only use a subset. In other languages, widespread use of include files causes
the same phenomenon. In fact, this is one of the phenomena that motivates
Tichy and Baker’s work with include files-their system avoids recompiling
procedures that rely on a changed include file if the change only involves
declarations that are actually irrelevant to the procedure [30].

To see this more graphically, consider adding the statement

x=p4 *17

to procedure c in the example from Figure 2. This changes MOD(Y) to {p 1, x}
and MOD( /3) to {vI, V2, x}. Under the most recent compilation test, this would
have required recompilation of both a and b. Using APPEARS information, the
test determines that a requires recompilation, but b does not, since x does not
appear in b.

A word of caution is required at this point. There are optimizations that, on
first consideration, appear to be limited to a single procedure but are, in
reality, inherently interprocedural. A prime example is converting a sequen-
tial loop into a parallel loop. If the loop contains no call sites, the transforma-
tion’s scope is limited strictly to the single procedure. If, however, the loop
contains a call site, the transformation is really interprocedural in its scope
because it changes the dynamic call graph of the program. If the called
procedure contains a local, static variable x with an upwards-exposed use,
followed by an assignment to x, the dependence between the definition of x
in one iteration and the use of x in the subsequent iteration must be
preserved. Burke and Cytron refer to such variables as “hidden variables” [7].
As we have formulated them, the recompilation tests determine when an
intraprocedural optimization can be invalidated by a subsequent change in
an interprocedural set. If x is a local, static variable in the called procedure,
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x will not appear in the MOD or REF sets for the call site and the recompila-
tion tests will not be able to detect when it is necessary to recompile the
calling procedure. Even if x is a global variable, the APPEARS test will only
handle recompilation correctly if x appears in the calling procedure. Interpro-
cedural optimizations require a more complex treatment; we describe one
such method in Section 7.

5. COMPILER COOPERATION

The techniques presented in Section 4 compute approximate annotation sets.
While the best of these techniques can eliminate many spurious recompila-
tion, the question remains, can we compute more precise annotation sets?
Spurious recompilation arise from a simple fact—the compiler cannot capi-
talize on every interprocedural fact presented to it. Thus, the APPEARS test of
Section 4.2 may judge that some change in an interprocedural set mandates a
recompilation, even though the fact is actually irrelevant, simply because the
compiler had no opportunity to exploit the fact during the previous compila-
tion. This section explores a methodology for computing more precise annota-
tion sets by relying on the compiler to record those interprocedural facts that
it actually uses.

To illustrate how such a method would work, consider constructing the
MustBeConstant sets to be used in determining which procedures need
recompilation due to changes in CONSTANTS sets. Understanding how the
compiler actually uses CONSTANTSinformation is crucial. For a procedure p,

CONSTANTS(p) describes facts known to hold on entry to a procedure. The
compiler capitalizes on this information by using it to initialize the global
constant propagation phase. Information from CONSTANTS(p) then percolates
into other optimizations from folded constants. During global constant fold-
ing, the compiler can easily construct a precise MustBeConstant set
by adding a pair (x, v) to MustBeConstant( p ) whenever it folds v into a
use of X.4

Computing precise sets for interprocedural summary and aliasing informa-
tion is not as simple. The compiler can use summary and aliasing information
in two very different ways. It can use a fact directly to justify the safety of an
intraprocedural optimization at some call site, or it can fold the information
into global data-flow information. The results of that global data-flow infor-
mation can then be used to justify the safety of an intraprocedural optimiza-
tion. We call this latter kind of use an indirect use. The remainder of this
section describes how to compute annotation sets for interprocedural sum-
mary and aliasing information that is indirectly used by the compiler. Section

~The interprocedural constant analysis can also produce sets describing constant values re-
turned by procedures through global variables and call-by-reference formal parameters [9].
Producing exact A4usfBeCon stant sets for each call site under such a schemeis more difficult.
The optimizer must know which call sites contributed returned values to eachfolded constant.
Obtaining this information requires solving an auxiliary problem similar to those describedfor
AVAIL and VERYBUSY in Section5.2.
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6 discusses constructing annotation sets when the interprocedural summary
and aliasing information is used directly.

In order to compute precise annotation sets for indirect uses of interproce-
dural summary information, the compiler must be able to associate interpro-
cedural information with the intraprocedural data-flow information to which
it contributed. This association enables the optimizer to produce a precise list
of the interprocedural summary facts actually used to justify the safety of
each transformation that it applies. To compute this mapping, the compiler
must augment the intraprocedural dataflow information that it computes
with lists of the call sites whose summary information contributed to the
various sets. Using this map from intraprocedural data-flow facts to call sites,
the compiler can construct precise annotation sets. It can determine, at
optimization time, precisely which interprocedural facts must be preserved to
guarantee the correctness of a particular application of some optimization.
Placing these facts in the appropriate annotation sets ensures that the
procedure will be recompiled and reoptimized if one of these facts changes.

To demonstrate how this approach would work, we will consider a set of
four optimizations and the global data-flow information required to support
them. The optimizations are common subexpression elimination, code hoist-
ing, global constant propagation, and eliminating register stores. We will
classify each optimization as being one of two types with respect to recompila-
tion analysis. Throughout this discussion, a procedure p will be represented
by its control-flow graph, G = (IV, IZ, no). The nodes of this graph represent
basic blocks, sequences of statements with no control flow branches. Proce-
dure invocations can appear in expressions and as part of a sequence of
statements in a basic block. The edges e = (m, n) G E represent control flow

between two basic blocks. Control enters the procedure through its entry
node nO.

To unify the data-flow equations that we are considering, we will use terms
similar to those presented in Aho et al. [I]. Consider equations of the form:

out[b] = A (gen[cz] U (out[a] m nkzlz[a])) (1)
u= f(b)

where out[ b ] contains the meet over all paths solution for block b, gen[ a]

contains local information generated in block a, and nkill[ a ] contains those
facts not invalidated in block a. Here, A is the appropriate meet operator, (J
or f). Finally, let F’[ b ] be the set of predecessors of b in the flow graph and
S[ b] be the set of successors of b in the flow graph. Then, f[ b] is either P[ b ]
or S[ b ], depending on whether the problem is a forward or backward flow
problem. Note that equations of this form correspond to putting the data-flow
functions on the edges of the flow graph.

5.1 CALLSBETWEEN Sets

To capture the information needed to compute more precise annotation sets,
the compiler will need to compute some auxiliary information during its
standard global flow analysis. Assume that we have a data-flow fact a and a
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block b in the control-flow graph where the presence of a is used to justify an
optimization in block b. Then, to understand the impact that a specific
interprocedural fact has on the values of the sets produced by forward

data-flow analysis, the compiler will need to determine the set of call sites
between the last occurrence of data-flow fact a and block b, along all paths
leading from a to b. We will call that set CALLSBETWEEN( a, b). For backward

data-flow problems, the compiler will need to determine the set of all call
sites between block b and the first occurrence of dataflow fact a,
along all paths leading from b to a. We will call that set
CALLSBETWEEN(b, a). For the sake of simplicity, we will refer to both types of
information as CALLSBETWEEN sets and assume that the difference is clear
from the order and type of the subscripts. Thus, for our purposes, the
direction of the data-flow equation affects the way that gerz(a) is defined,
whether f(b) is P(b) or S(b), and the region of interest considered for
CALLSBETWEEN.

To compute CALLSBETWEEN sets, we will expand the domain of the
equations that define the global data-flow problems used to support the
optimization. We refer to this process as solving an auxiliary data-flow
problem. In the original formulations, the elements of the various sets, out,
gen, and nkill, are names of data-flow facts. Thus, the presence of an element
a in out[ b ] still denotes that a is a data-flow fact holding at b, but it is now
represented in terms of a pair ( a.name, a calls), where a name represents
the literal name of the data-flow fact and a.calls is CALLSBETWEEN. To solve
this auxiliary problem, we expand the domain of the gen and nkill sets
accordingly:

—For a = gen[ b ], if the data-flow problem is a forward problem, a.calls is
the set of call sites in b after the last occurrence of a; if it is a backward

problem, a calls is the set of call sites in b before the first occurrence of a.

—For a ~ nkill[ b ], a.calls is the set of all call sites in b.

We must also extend the definitions of the operators to work over the
expanded domain. The new interpretations are:

X n Y To compute X n Y, for each element x = X such that =y ● Y with
x. name = y.name, add (x. name, x.calls U y.calls) to the result. Note
that Eq. (1) includes the term (out[ a] n nkill[ a]) rather than the
standard, equivalent term (out[ a] – kill[ a]) because it is necessary
to accumulate call-site information about the nkill[ al sets, which do
not appear when the term is written in its standard form.

X U Y To compute X U Y, first determine the set Yonly, containing every
element of Y whose name does not appear in X. Then the desired
result is the natural union of X and Yonly. Note that X U Y as
defined here is not a commutative operation. For this scheme to work
correctly, X must represent gen[ a] and Y must represent (out[ a] n
nkill[ a]). To avoid overloading the meaning of the U operator, X @ Y
will represent the natural union of X and Yonly throughout the
remainder of this paper.
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X A Y To compute X A Y, if the appropriate meet operation is U, then for
each element x E X such that Ely = Y with x.narne = y.name, add
( x.name, x.calls U y.calls) to the result. For each x ● X (and y = Y)
where there is no y = Y(x ● X) with x.name = y.nczme, add x (y) to
the result. If the appropriate meet operation is (l, perform the
intersection as defined for X f’ Y above. Note that in both cases,
a calls is computed as the natural union of the call sites from all the
appropriate paths.

Once we have reformulated the problem in this manner, we can solve it using
traditional global dataflow techniques. The solution to the reformulated
problem contains both the solution to the original problem, encoded as the
name fields of set elements, and the additional CALLSBETWEEN sets, encoded
as the calls fields of set elements. We will use this technique in each of our
four examples.

5.2 Type I Optlmizations

The type I optimizations rely on the presence of a fact in the set out[ b] to

justify the safety of applying the transformation. The three problems that we
consider, global common subexpression elimination, code hoisting, and global
constant propagation, are each formulated as a data-flow computation fol-
lowed by selective application of a transformation. The decision to apply the
transformation is based on the results of the data-flow analysis.

5.2.1 Corn mon Subexpression Elimination. When the compiler discovers
two or more instances of a single expression separated by code that does not
redefine any of the variables used in the expression, it can save the result of
the first evaluation and replace the subsequent evaluations with a simple
reference to the saved value. To locate opportunities for this optimization,
known as global common subexpression elimination, the compiler must know
which expressions are available at various points in the procedure. An
expression is available on entry to a basic block b if, along every path leading
to b, the expression has been evaluated since the most recent redefinition of
its constituent variables [1]. To represent this information, we associate a set
AVAIL(b) with each block b. AVAIL(b) contains all expressions available on
entry to b. These sets can be derived by solving a forward data-flow analysis
problem. The following system of equations describes the problem:

AvAIL(b) = A (DEF(a) U (AVAIL(a) f’ NKILL(a)))

a6P(b)

where P(b) is the set of predecessors of b. DEF( a) contains those expressions
computed in a and not subsequently redefined in a. NKILL( a’) is the set of
expressions not redefined in a. This system of data-flow equations is rapid

in the sense of Kam and Unman [21], so it can be solved efficiently using
iterative techniques.

Expressions remain available as long as they are included in NKILL( b). For
a block b, NKILL( b ) excludes any expression containing a variable killed
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locally in b. In the absence of summary information about call sites in b, the
AVAIL analysis must assume that a procedure call kills every variable it can
access. Thus, if b contains a call site, NKILL( b ) must exclude all expressions
containing actual parameters and global variables that can be modified as a
side effect of the call. If summary information is available, this exclusion can
be reduced to the set of expressions involving variables contained in MOD(e)
for the call site e. REF(e) plays no role in the AVAIL computation.

When a variable u = Mor)(e), no expression containing v can be in NKILL(b)
for the block b containing call site e, because v maybe modified by execution
of the procedure call. Thus, if an expression a = AVAIL(b) for some block b,

its constituent variables cannot be in the MOD set of any call site between a‘s
most recent evaluation and b, on each path leading to b. If the compiler
eliminates a reevaluation of a, the correctness of that decision relies on the
values of the MOD sets for the appropriate call sites. The procedure will need
to be recompiled if any of the variables used in a are added to one of these
MOD sets.

To capture this information in the annotation sets, the compiler can
compute CALLSBETWEEN sets along with the AVAIL information and use them
to compute Mayillode( e). The CALLSBETWEEN sets are computed as described
in Section 5.1. For each a ● AVAIL(b), a.calls is CALLSBETWEEN ( a, b). The
following definitions are used for the local sets.

—For a ● DEF(b), a calls is the set of call sites in b after the last definition
of a!.

—For a @ NKrLL(b), a.calls is the set of all call sites in b.
/

The operations used are those described in Section 5.1. In this case, the meet
operator is intersection. Using these definitions, for each a E AVAIL(b), a calls

corresponds to the set CALLSBETWEEN( a, b). Even with the changes in the
operators and local sets in the AVAIL computation, calculation of the new
AVAIL and CALLSBETWEEN information is still rapid in the sense of Kam and
Unman [21].

Given CALLSBETWEEN( a, b), MayMod(e) can be constructed for common
subexpression elimination as follows:

(1)

(2)

Initially, let MayMod(e) = ALLVARS, the set of all actual parameters and
global variables, for each call site e in p.

Whenever an evaluation of an available expression a is replaced in block
b, the compiler removes all constituent va~iables of a from MayMod( e),

for each call site e in CALLSBETWEEN( a, b) and each call site e inside b

occurring before the optimization.5

The resulting MayMod sets model the recompilation dependence introduced
by applying this optimization.

5The optimizer has assumedthat these variables are not in MoI)(e) at eachof these call sites.
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5.2.2 Code Hoisting. An expression is very busy at a point p in a program
if, along every path leading from p, the expression is evaluated prior to
redefinition of any of its constituent variables. When the compiler discovers
that an expression is very busy at p, it can evaluate the expression at p, save
the result of this evaluation, and replace the subsequent evaluations with a
simple reference to the saved value. This transformation, called code hoist-

ing, reduces the total code space required for the procedure [4]. To locate
opportunities for code hoisting, the compiler must know which expressions
are very busy at various points in the procedure. To represent this informa-
tion, we associate with each block b a set VERYBUSY( b) that contains all
expressions that are very busy upon exit from b.

To find opportunities for code hoisting, the optimizer can compute the sets
of very busy expressions. These sets can be derived by solving a backward
data-flow analysis problem. The following system of equations describes the
problem:

VERYBUSY( b) = A (USED(CL) u (VERYBUSY( a) n NKILL(cz))).
a~s(b)

Here, USED(a) contains those expressions computed in a prior to redefinition
in a of any of its constituent variables. NKILL( a) is the set of expressions not

redefined in a.
When a variable u ● MOD(e), no expressions containing v can be in NKILL,(b)

for the block b containing e. Thus, if an expression a = vERYBuSY(b~ for
some block b, its constituent variables cannot be in the MOD set of any call

site between the end of b and the first evaluation of a on each path leading
from b. To apply the hoisting optimization, the compiler would move the
evaluation of a to the end of b, store the result in a temporary, and replace
each of the subsequent evaluations with a reference to the temporary. The
correctness of the decision to hoist a relies on the values of the MOD sets for
the call sites between b and each of the replaced evaluations. The procedure
will need to be recompiled if any of the variables used in a are added to one
of these MOD sets.

To capture this information in the annotation sets, the compiler can
compute auxiliary information in the form of CALLSBETWEEN sets as de-
scribed in Section 5.1. For each a ● VERYBUSY( b), a.calls represents the set
CALLSBETWEEN ( b, a). The local sets for the auxiliary problem are defined as:

—For a = USED(b), a.calls is the set of call sites in b before the first

definition of a.

—For a E NKmL(b), a calls is the set of all call sites in b.

The operations used are those described in Section 5.1. The meet operator is
intersection. The dataflow problem is still rapid in the sense of Kam and
Unman, even after the addition of the auxiliary problem [21].

Given CALLSBETWEEN ( b, a), MayMod(e) can be updated for code hoisting
in the following manner:

(1) Initially, let MayMod(e) = ALLVARS, the set of all actual parameters and
global variables, for each call site e in p.
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(2) whenever the optimizer moves avery busy expression a tothe end of
block b,thecompiler should remove each of theconstituent variables of a
from MczyMocl(e) for each a in CALLSEIETWEEN(b, a).

The resulting MayMod sets describe the compilation dependence introduced
by code hoisting.

5.2.3 Global Constant Propagation. In global constant propagation, the
optimizer replaces an expression with a constant value if the value can be
computed at compile time .6 This optimization is based on reaching defini-

tions information. A definition reaches a particular point p in a program if
there exists a path between it and p along which the defined variable is not
redefined. To represent this information, we associate a set REACH(b) with
each basic block b. REACH(b) contains all definitions that reach the entry to
block b. These sets can be derived by solving the following forward data-flow
problem.

REAcH(b) = A (DEF(a) U (REACH(a) f’ NKILL(a))).
a EP(b)

Here, DEF(a) contains those definitions in a of variables that are not subse-
quently redefined in a. NKILL(a) is the set of definitions for which the defined
variable is not redefined in a.

When constant propagation is performed, a use of a variable x can be
replaced by a constant c only if all definitions of x that reach the use have
been recognized as having the value c. For a use of x that is replaced by c at
a point p, any call sites that can be executed prior to p can potentially
invalidate the optimization. If x is subsequently added to the MOD set of
some such call site, that change represents a potential change in x‘s value. In
the absence of better interprocedural information, this new definition invali-
dates the forward substitution of c for x at p.

To account for this interaction between interprocedural MOD sets and the
global REACH sets, we can compute auxiliary CALLSBETWEEN sets in the
manner described in Section 5.1. For each a ● REACH(b), a calls represents
the set CALLSBETWEEN( a, b). In this case, we use the following definitions for
the local sets.

—For a = Din?(b), a.calls is the set of call sites in b after the last definition
of a.

—For a E NKH,L(b), a.calls is the set of all call sites in b.

The operations used are those described in Section 5.1. The meet operator is
set union. With these definitions, the revised REACH equations will compute
both reaches information and the CALLSBETWEEN sets.7 The revised computa-
tion is still rapid in the sense of Kam and Unman [21].

6Where interprocedural constant propagation is performed, the CONSTANTS sets are used as
initial imfm-mati.n in the && ~.o.edu.e, o. ~lobal, computation.
7Note that in this case, X n Y is the empty set, where X = DEF(CZ) and Y = (REAcH(a) n
NKILL(a)). So, we could use X u Y instead of X @Y. Howeverj it is correct as definedhere and it
fits the proposedframework.
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Given the CALLSBETWEEN sets, we can compute MczyMocl sets that are
more precise than those derived using APPEARS information. To update
MayMod(e ):

(1) Initially, let MayMod(e ) = ALLVARS, the set of all actual parameters and
global variables, for each call site e in p.

(2) Whenever a variable x is replaced by a constant, the compiler must
update the MayMod sets for any call site that lies on a path between a
definition of x and the replacement site. These are the call sites in the
sets CALLSBETWEEN( a, b) for each definition a of x in REACH(6), where b
is the block containing the replacement. Additionally, x should be re-
moved from MayMod(e ) for each call site inside block b occurring before
the replaced reference.8

The MayMod sets computed this way, however, are still approximate. When
an assignment is added in some other procedure, causing x to appear in the
MOD set of some call site e, we do not know the value that x receives. It is
possible that x receives the value c at the new assignment, too. If the
interprocedural analysis finds constant values returned by procedures, the
MayMod sets can be computed in a more precise manner to account for those
returned constants [9].

5.3 Type II Optimizations

Where type I optimizations depend on the presence of a fact in the set out[ b ],

type II optimizations depend on the absence of a fact from o.ut[ b ]. As an
example, we consider register store elimination, which depends on the ab-
sence of a variable from LIVE sets to remove the last store of a value. This
changes the CALLSBETWEEN information that we are interested in computing
in two important ways.

(1) The information of interest is associated with facts not in the set. In the
type I optimizations, it was associated with facts in the set. Thus, we are
interested in the a calls fields of facts that would correspond to the
zeroes in a bit-vector implementation.

(2) The set CALLSBETWEEN(b, a ) now describes a region between b and a
point at which the optimizer decided that some event involving a did not

occur. In the case of register store elimination, if a is not LIVE at b,

CALLSBETWEEN contains all call sites between block b and a redefinition
of a (or an exit from the procedure if no redefinition exists) along every
path leaving b.

We would like to use the framework described in Section 5.1 to compute
CALLSBETWEEN information for type II optimizations. For this framework to
be applicable, we must compute out[ b ], the data-flow information that the
compiler actually uses when it performs type II optimizations. Thus, when

8If an expressionis replaced,rather than a simple variable, the IVfayModsets(at the sameset of
call sites) must be updated to removeeachof the expression’sconstituent variables,
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the optimizer relies on the absence of a fact from some data-flow set, we
recast the problem to compute the complement of that set, so that the
transformation can be based on the presence of a fact in the complement.
This insures that the CALLSBETWEEN information for the facts that the
optimizer uses will be accumulated.

To determine how to transform the data-flow equations associated with a
type II optimization into the form needed to compute CALLSBETWEEN infor-
mation using the method described in Section 5.1, we recast our general
formulation, Eq. (1) from Section 5, as follows.

Outo[b] = A. (geno[a] u (outo[a] n rkllo[a])).
a= f(b)

Using DeMorgan’s law, we compute the equation for Out. [ b ]. Note that A is
the complement of AO , where u and n are considered complements.

outo[bl = A (geno[czl n (outo[al u rzkillo[al)).
a= f(b)

Distribute the intersections over the union to construct a new equation:

ozdo[b] = A ((geno[cz] n rddlo[cz]) u (outo[a] ngeno[a])).
a=f(b)

We can redefine this equation to look like Eq. (l):

out[b] = A (gen[a] u (out[al n nhill[al))
a= f(b)

with the following assignments: out[b] = outo[bl, gen[ct] = ge~o[~]

n nkillo [ a ], and nkill[ a] = geno [ a ]. Again, CALLSBETWEEN can be computed
as described in Section 5.1. The next subsection shows an example based on
the use of LIVE information.

5.3.1 Eliminating Register Stores. If the compiler discovers a point where
the value of a local variable of a procedure exists in a register and that value
cannot be used later in the procedure, it need not store the value back into
memory. To perform this optimization, called eliminating unnecessary stores,

the compiler must recognize the last use of a variable in a procedure.
A variable is live at a point in a procedure if there exists a control flow

path from that point to some use of the variable and that path contains no
assignments to the variable. Live analysis associates a set LIVE(b) with each
block b. L1~(b ) contains all the variables that are live upon exit from block
b. LIVE sets can be computed by solving a backward data-flow problem. The
following equation is a slightly modified version of the equation given by Aho
et al. [1]

Lnm(b) = A (IN(a) U (LIvE(a) n NDEF(a))).
cz~S(b)

Here, LIVE(b) is the set of variables live immediately after block b, IN(a) k

the set of variables whose values may be used in a prior to any definition of
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that variable in a, and NDEF(a) is the set of variables not assigned values in
a.

Without summary information for call sites, the compiler must assume that
a call references any variables visible to it. This assumption extends the live
ranges of variables, inhibiting the application of register store elimination.
Interprocedural REF sets can reduce the set of variables assumed LIVE
because of a call site. Because MOD(e) says nothing about uses, MOD informa-
tion is not pertinent to the computation of LIVE information.

Register store optimizations are invalidated when the life of a variable is
extended by addition of a variable use after the current last use. Thus, any
call sites between the eliminated store and the end of the procedure can
potentially invalidate a register store optimization. Assume that the opti-
mizer has eliminated the last store of a variable x. If a subsequent change to
some other procedure adds x to the REF set of a call site that occurs after the
eliminated store, the procedure must be recompiled, since the change possibly
makes the eliminated store necessary for correct execution of the program.

To construct MayRef sets that reflect this dependence on interprocedural
REF information in the LIVE sets, we would like to compute auxiliary CALLS-
BETWEEN sets in the manner described in Section 5.1. Because this is a type
H optimization, computing the auxiliary information is more complex. First,
we must reformulate the data-flow equations as described in the previous

subsection. We recast the equations in terms of LIVE( b ). Let out[ b ] = LIVE(b),

gen[ a] = IN(CZ) n NDIW(a), and ru%ll[ a] = IN(cz). Let the meet operation be
set intersection. Now the general equation we gave in Section 5 can be used
to compute LIVE.

It is interesting to note how similar the LIVE computation is to the other
data-flow equations that we have considered. Given this reformulation, we
can derive the necessary CALLSBETWEEN sets as auxiliary information during
the LIVE computation. For each a = out[ b ], a.calls represents the set CALLS-
BETWEEN(b, a). The following definitions work within the general framework
described in Section 5.1.

—For a = gen[ b ], a.calls is the set of call sites in b before the first definition
of a.

—For a = nkill[ b ], a calls is the set of all call sites in b.

The operations used are those described in Section 5.1. The meet operator is
intersection. After all this manipulation, the final data-flow framework for
LIVE with its auxiliary information remains rapid in the sense of Kam and
Unman [21].

To construct a recompilation test that precisely characterizes the use of
interprocedural information in the register store optimization, we want to
enlarge the MayRef(e) set. Given this set, MayRef( e) can be computed as
follows:

(1) Initially, let MayRef(e) = &LV&w, the set of all actual parameters and
global variables, for each call site e in p.
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(2) Whenever a store of a variable v is eliminated, the optimizer removes v
from illczylle~(e) for each call site e in CALLSBETWEEN(b, a) and each call
site inside b occurring after the optimization.

This results in iWayRef sets that precisely capture the recompilation depen-
dence for this optimization.

5.4 Rationale

In each of the four examples, we were able to construct more precise annota-
tion sets by using CALLSBETWEEN sets computed as an auxiliary data-flow
problem. The CALLSBETWEEN information associated with a fact follows the
path that the fact takes through the procedure during the data-flow computa-
tion. When a fact is generated in a basic block, the set a.calls associated with
it takes into account the call sites between the point where it was generated
and that end of the block where the data-flow computation exits. In a
backward flow computation, this is the beginning of the block; for a forward
flow computation, it is the end of the block. When a fact a passes through a
block unchanged, all of the call sites in the block are added to a calls because
the block is an a-clear path.

The operations used in solving the auxiliary data-flow problems are
straightforward. Whenever multiple paths come together, some data-flow
facts are invalidated and some are not. Any fact that is not invalidated has an
a calls set that contains the natural union of a calls sets from the individual
facts that made the new fact valid.

The only operator that is unusual is the X @ Y operator. The reason for
this operator is somewhat subtle. The standard data-flow equations use
binary information. In extending the underlying data-flow equations to cor-
rectly compute CALLSBETWEEN sets, we expanded each bit in the original
bit-vector to include both the bit and a set that we designate that bit’s calls

set. We designate the original bit as the fact’s name. The set operations on
these expanded objects are based on the presence or absence of the name, i.e,
the value of its original bit. In this framework, the result of X U Y and
X @ Y are not the same. (Recall the definition in Section 5.1.) Furthermore, it
is clear that the data-flow events that are of interest to an optimizer are
those computed with the X @ Y operation because these are the events that
happened nearest to the point of optimization. For example, consider a basic
block b that contains two computations of expression e. The terms el and ez
refer to the first and the second instantiation of e, respectively. Assume that
e = AVAIL(b) n NKILL( b). If the optimizer applies common subexpression
elimination to ez, the optimization is safe as long as none of the variables in e
are redefined between el and ez. The fact that e was also available on all
paths leading to b is immaterial because all of the paths to ez pass through
el. Hence, only the call sites between el and ez need to be recorded to insure
safety. Stated in more general terms, for a fact in both X and Y, its presence
in Y is irrelevant because the occurrence in X happens on the path to the
occurrence in Y. If the operators in the standard data-flow equations were
more descriptive, we could merely state that we compute the a calls set for a
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fact at any point by doing a natural union of the a calls sets from all of the
paths contributing to that fact.

The table in Figure 3 summarizes the data-flow information used in our
example optimizations. Global common subexpression elimination and code
hoisting clearly depend on all-paths information. The AVAIL and VERYBUSY
information that we compute for these optimizations is all-paths information.
Even optimizations that, at first glance, appear to depend on any-path
information actually depend on all-paths information. Global constant propa-
gation uses REACH information. REACH is any-path information, but global
constant propagation depends on an augmented form of this information. It
computes all-paths information—the definition reaches point p with known
constant value c. For a constant c to be folded at p, the same constant value
c must reach p along all paths through the procedure leading to p. Finally,
register store elimination is usually based on any-path LIVE information.
However, the information that is actually used by this optimization is the
all-paths LIVE information discussed in Section 5.3. This is true of other
optimizations, like dead-code elimination, that are based on the converse of
any-paths information.

Our examples illustrate that optimizations based on global data-flow infor-
mation are either based on all-paths information (type I) or the converse of
any-paths information (type II). In either case, the information actually used
by the optimization is all-paths information. This follows from the simple
observation that, along all paths through the program, the optimization must
preserve the program’s semantics. Thus, the correctness of the optimization is
based on the behavior of the program along all paths (and, therefore, on the
meet-over-all-paths solution for some data-flow problem) [26, 29].

The information that we compute for CALLSBETWEEN is any-path informa-
tion because optimizations are based on all-paths information. That is, if an
event along any path to the optimization is invalidated, the optimization
itself is invalidated because it relied on all-paths information. The any-path
information that we compute for recompilation analysis leads to a precise test
for recompilation due to changes in interprocedural information because it
allows us to detect if any path between an event and an optimization that
depends upon that event is broken. Since optimizations rely on the fact that
none of these paths are broken, we know that recompilation is necessary if
any of the paths are broken.g

5.5 Complexity

Adding the computation for CALLSBETWEEN information to the global data-flow
analysis phase increases the time and space that are required to compute the

—
9Unless, of course, the editing changeto the program makes no real difference m the values
being passedaround. Consider adding an assignment to someprocedurethat enlargesthe MOI)
set but doesnot changethe values of any variable on return from the procedure. If we assign a
variable its known constant value, we really do not invalidate the application of a constant fold,
but the MoD-based test will dictate recompilation. This is another example of the limit of
precision—the analog of the “up to symbolic evaluation” condition that Barth gave for summary
information.
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global data-flow information by a factor of 0(p) where p is the number of
call sites in the procedure. The additional space is used to store, with every
data-flow fact in every basic block in the program, the set of call sites
associated with that fact. If the set of call sites is stored as a bit vector, each
set requires a bit vector of length p. In effect, we have a k by p bit matrix,
where k is the number of data-flow facts.

Additional time is needed to update the set of call sites associated with the
data-flow facts. To update the call sites information during the data-flow
computation, we compute, for each call site in the bit matrix, those facts that
rely on interprocedural information provided by that call site. This computa-
tion requires a constant number of bit vector operations on bit vectors of
length k for each of the p call sites in the procedure. Hence, the time
required to compute global data-flow information is 0( p17d(G)) for reducible

graphs and 0( PEN) for nonreducible graphs, where E is the number of
edges, N is the number of basic blocks in the flow graph of the procedure,
and d(G) is the loop-connectedness of the graph as defined by Kam and
Unman [21].

Since nested procedures occur inside a single compilation unit, an opti-
mization that saves both time and space is possible. A clever implementation
can capitalize on the fact that variables not visible to the calling procedure
need not be represented in the CALLSBETWEEN set. This is safe because
changing the visibility of variables inside a procedure requires an editing
change—an act that mandates its recompilation.

5.6 Generalization

Examining our four sample optimizations leads to the following general
algorithm for constructing precise annotation sets. The compiler assigns the
annotation sets values that would never mandate recompilation and then
adjusts the sets to reflect each transformation, as applied. The sets get the
following initial values:

(1) MayBeAlias(p) = ALLVARS x ALLVARS,

(2) MayMod(e) = ALLVARS, for each call site e in p,

(3) MczyRe~(e) = ALLVARS, for each call site e in p, and

(4) MustBeConstant( p) = 0.

Whenever an interprocedural fact is used to justify the safety of an optimiza-
tion, the appropriate set is adjusted, subtracting from MayBeAlias, MayMod,

or MayRef, or adding to MustBeConstant.

The construction of MustBeConstant was described in Section 5. By consid-
ering the computation of MayMod and MayRef for the four example opti-
mizations, we can develop a general strategy toward computing MayMod

and MayRef sets with respect to optimization based on global data-flow
information.

We distinguish between two respects in which an addition to MOD can
change global data-flow information. First, it contributes a new definition
that reaches certain points in the program. This adds definitions to REACH
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sets and can affect all-paths information that is related to REACH information.
Our discussion of updating MayMod sets for global constant propagation
illustrates the general strategy for accommodating this kind of impact.
Second, it can affect the reaching, exposure, and availability characteristics of
other definitions, uses, and expressions, respectively (i.e., it can kill them). In
the same manner that MOD definitions preserve the REACH characteristics of
other definitions, they preserve any-path global data-flow information in
general. Thus, this latter impact is only important with respect to all-paths
information. Our discussion of updating MayMod sets for common subex-
pression elimination and code hoisting illustrates the accommodation of this
kind of impact.

As with MOD and REF information, ALIAS information is factored into global
data-flow information. To determine when a procedure p needs to be recom-
piled due to changes in ALIAS(p), it is necessary to track which facts the
compiler indirectly used when performing optimization. This can be accom-
plished by annotating data-flow facts in a manner analogous to the one used
for MOD and REF information.

When a new pair is added to ALIAS(p), definition points for one member of
the alias pair become definition points for the other member of the pair.
Likewise, uses of one member of the alias pair become uses of the other
member of the pair. Because of this, adding a new pair to ALIAS(p) can
invalidate optimizations by effectively adding definitions and uses to the
routine. Optimizations based on the type of data-flow information described
in Section 5.2 can be invalidated by adding definitions; optimizations based
on the type of data-flow information described in Section 5.3 can be invali-
dated by adding uses.

To precisely determine if an alias pair should not appear in MayBeAlias(p),

the compiler computes either DEFINEDBETWEEN or USEDBETWEEN informa-
tion for each data-flow fact that involves either a global variable or a formal
parameter. DEFINEDBETWEEN ( a, b) contains those global variables and for-
mal parameters defined on paths contributing to the correctness of data-flow
fact a in basic block b; DEFINEDBETWEEN is computed when the data-flow
information described in Section 5.2 is employed. USEDBETWEEN( a, b) con-
tains those global variables and formal parameters used on paths contribut-
ing to the correctness of data-flow fact a in basic block b; USEDBETWEEN is
computed when the data-flow information described in Section 5.3 is em-
ployed. Given the DEFINEDBETWEEN or USEDBETWEEN information for a
particular data-flow fact, the compiler can determine whether or not an alias
pair can safely appear in MayBeAlias( p ) as follows:

(1) Initially, let MayBeAlias( p) = ALLVARS x ALLVARS, the set of all pairs of
global variables and formal parameters in p.

(2) Whenever the compiler uses data-flow fact a in block b, it must remove
from MayBeAlias( p) all alias pairs consisting of a global variable or
formal parameter referenced in a and a variable in either DEFINEDBE -
TWEEN( a, b) or USEDBETWEEN ( a, b).
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Since the paths that lead to the correctness of a are the same as the paths
involved in the CALLSBEWTEEN( a, b) computation, the approach used for
computing CALLSBETWEEN information can be used to compute DEFINEDBE -
TWEEN and USEDBETWEEN information. The definitions for the operators
presented in Section 5.1 are used for the computation; geiz[ b] and nkill[ b]

are computed as described for CALLSBETWEEN information, except that defini-
tions and uses of global variables and formal parameters are tracked instead
of call sites.

This section showed an approach for computing more precise recompilation
information for changes in CONSTANTS,MOD, REF, and ALIAS sets. Computing
annotation sets that actually reflect compile-time decisions will probably
increase the compile times for individual modules. However, it will also make
it possible for the compiler to more precisely determine what needs to be
recompiled when an editing change is made—potentially leading to a reduc-
tion in the number of procedures that need to be recompiled. Under a
scenario where either editing changes are expected to be frequent or compila-
tion is expensive due to the aggressive analysis and optimization employed by
the compiler, the additional compile time cost associated with using precise
recompilation analysis may be offset by the reduction in the number of
recompilation.

6. DIRECT USE OF INTERPROCEDURAL FACTS

So far, our discussion has concentrated on finding the recompilation depen-
dence that arise from the contribution of interprocedural data-flow informa-
tion to global data-flow information. Once interprocedural information is
made available to the compiler, it is reasonable to expect that the optimizer
will make direct use of the facts where appropriate. To preserve correctness
in compiled code, our methods of computing annotation sets must account for
such direct use.

As an example, consider the code that gets generated for a procedure call in
a language with call-by-reference parameter passing. For simplicity, assume
that all registers that are preserved across the call are saved in the calling
routine. If the compiler ambitiously keeps values in registers, then it is likely
that one or more of the actual parameters at the call site will not have a
current copy in storage—that is, in memory rather than in a register.l” Thus,
before the call, the compiler must generate code to store each of the actual
parameters and global variables for which the store is not current. Similarly,

10The optimizing compiler for R“ tries to keep all scalar values in registers. Nonaliased global

scalars are assumed to have a correct and consistent storage representation only at call sites and

procedure entry and exit. A local scalar v is assumed to have a storage representation only in the
neighborhood of a call where it is passed as an actual parameter. It is stored immediately prior to
the call and restored afterward. The other mechanism hy which a local scalar variable gets
moved from a register to storage is when the register allocator decides that it must spill the

variable.
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after the call, it may need to refresh the register copies of such values from
the store, to ensure that they are current.

If the optimizer has interprocedural MOD and REF sets for the call site, it
can do better. Any parameter or global variable that is in a register before the
call site and is not contained in the set (MOD(e) U REF(e)) need not be stored
before the call. Thus, the compiler need not generate either the address
computation or the store instruction. Similarly, any parameter that is not
contained in MOD(e) need not be refreshed after the call, allowing the
compiler to eliminate both the address computation and the load instruction.

The APPEARS test presented in Section 4.2 will correctly model the recompi-
lation dependence introduced by such optimizations. In fact, eliminating
stores before the call has the effect of making the APPEARS test for MOD and
REF information precise for global variables. If a global variable that appears
in the calling procedure is added to either the MOD or REF set at some call
site, recompilation will be needed to insert the store for that parameter before
the call site. Otherwise, either a reference inside the called procedure or the
restore after the call can receive an incorrect value.

If a more precise annotation set is being computed, in the manner de-
scribed in Section 5, the compiler will need to record such direct use of facts
in the appropriate annotation sets. Thus, for each store eliminated before the
call site e, the compiler would need to remove the variable from MayMod(e)
and MayRef(e). Similarly, for each refresh eliminated after e, it would need
to remove the variable from MayMoci( e).

When the compiler directly uses ALIAS information in its compilation, it is
difficult to produce precise recompilation information. This is due to the
manner in which the compiler employs ALIAS information. When two vari-
ables are potential aliases, the compiler must preserve the relative ordering
of their loads and stores. Doing this requires either that the compiler track,
pairwise, all uses and definitions of each alias pair, or that it simply treat
potential aliases extremely conservatively. Because of the expense and com-
plication involved in the former approach, all compilers with which we are
familiar adopt the latter strategy. Since the compiler does not track situa-
tions where it reorders loads and stores for variables that are not potential
aliases, it is difficult to determine when the compiler has relied upon the
absence of a particular alias pair from ALIAS(p). This information is neces-
sary for computing precise MayBeAlias( p ) sets. Thus, when ALIAS informa-
tion is used directly in a compiler, efficiency may dictate that the APPEARS
test discussed in Section 4.2 be employed.

7. LARGER COMPILATION UNITS AND INTERPROCEDURAL
OPTIMIZATION

Our compilation model assumes that each procedure is a distinct compilation
unit. Many compilers treat multiple procedures as an indivisible compilation
unit, producing a single object file for all the procedures in the unit. The
presence of multiple procedures in a single unit slightly complicates the
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recompilation analysis. When analyzing a unit that contains multiple proce-
dures, the compiler must recognize that the procedures are related.

To handle this situation, the compiler can build a pair of maps: one from
procedures into compilation units and the other from compilation units into
procedures. Using these maps, the analyzer can mark all of the procedures in
a unit for recompilation whenever any of its constituent procedures needs
recompilation. This can decrease the total amount of analysis required, since
it need not test any procedures in a unit already marked for recompilation.

This mechanism also provides a natural way of handling interprocedural
optimizations. For our purposes, an interprocedural optimization is an opti-
mization that

(1) moves code across a call site,

(2) changes the program’s static call graph, or

(3) changes the program’s dynamic call graph.

Examples of these are inline substitution, procedure cloning, and paralleliz-
ing a loop containing a call site, respectively.

Clearly, such transformations introduce new compilation dependence be-
tween the involved procedures. We can use the maps required for multiple
procedure compilation units to take account of such transformations in our
testing procedure. The idea is simple; whenever the compiler applies an
interprocedural optimization to a pair of procedures that belong to distinct
compilation units, these units are treated as if they were a single unit. This
strategy requires a straightforward adjustment to each of the two maps
described above.

To apply the recompilation test, the analyzer follows the algorithm sketched
in Section 4. First, it marks each procedure that has been changed by editing,
along with all procedures belonging to the same unit. Next, it updates all of
the interprocedural sets. Then, it applies the recompilation test to each
procedure where an interprocedural set has changed. Of course, if the proce-
dure is already marked for recompilation, the analyzer need not apply the
test. If the test indicates recompilation, the procedure is marked, along with
every procedure indicated by the entries in the procedure-to-unit map.

The maps represent the presence of multiple procedures in a compilation
unit and express the compilation dependence introduced by interprocedural
optimizations. They ensure that the test behaves correctly and efficiently.
Each procedure is analyzed independently. When the tests indicate that some
procedure must be recompiled, the analyzer marks all procedures in the unit
for recompilation. Using the maps can decrease the number of test applica-
tions that the analyzer must make.

It is important to recognize the difference between this approach and a
hierarchical approach like that found in structural data-flow algorithms. Our
approach maintains separate data-flow information for each of the proce-
dures, but accounts for the textual relationships between them. A hierarchi-
cal test would merge graph nodes in some structured way. Merging the nodes
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for the procedure would simplify the graph, but would result in merging the
information used in the recompilation test and losing some precision in the
test information. A fact allowed on entry to one procedure might be disal-
lowed on entry to another; if the procedures are both represented by a single
node and a single annotation set, the test must indicate recompilation when
the fact is added to either path.

8. IMPROVED OPTIMIZATION

We have seen that changes in interprocedural information can invalidate the
safety of optimizations applied in previous compilation. For the MOD, REF,
and ALIAS sets, adding facts to a set associated with a procedure possibly
mandated recompiling it, while deleting facts did not. Deletions can, however,
open up new possibilities for applying optimizations. Recall that optimiza-
tion based on MOD, REF, or ALIAS information rely on the absence of a fact
from the data-flow set rather than its presence. Similarly, adding a

(name, value) pair to a procedure’s CONSTANTSset can open up opportunities
for new optimizations based on knowledge of the constant value.

As stated, our recompilation tests detect when a procedure must be recom-
piled to ensure consistency with the program in which it will execute. They do
not address the issue of detecting potential improvements, although analo-
gous tests can be constructed. For each correctness test in the general
framework, a dual test that detects opportunities for improved optimization
can be constructed. We introduce four annotation sets for the improvement
test: WereMod, WereRef, WereAliased, and WereConstant. For each new
annotation set, we can formulate a test to predict when recompilation may
lead to improved optimization:

(a) WereAliased( p) – ALIAS NEW(P) + 0,
(b) WereMod(e) – MOD (

(c) WereRef(e) – REF

NEW e) + 0, for any call site e in p,

NEw(e) + @, for any call site e in p, and

(d) CONSTANTINEW(p) – WereConstant( p ) # @.

Again, set subtraction is defined so that a E (X – Y) if and only if a is a
member of X and not Y. The next subsection describes one possible formula-
tion of these annotation sets and shows how to compute the resulting
recompilation tests.

8.1 Defining the Annotation Sets

In Section 4.2, we described the approximate annotation sets for the correct-
ness test based purely on static information. Approximate annotation sets for
the improvement test can be defined in a similar manner. At each compila-
tion of a procedure p, the compiler can compute the information used to
construct the four annotation sets, based on the interprocedural data-flow
sets described in Section 3 and the APPEARS sets described in Section 4.2.
Specifically, the sets can be described as:

(1) WereAliased( p) = ALIAS OLD(P) n ALIASAPPEARS(p),

(2) WereMod(e) = MODoLD(e) n Appears, for each call site e in p,
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(3) WereRef(e) = REFo~~(e) n APPEARS(P), for each call site e in p, and

(4) WereConstant(p) = {(n, v) @ CONSTANTSO..(P) I n ~ APPEARS(P)}.

The rationale for these assignments is analogous to that underlying the
correctness test in Section 4.2. Substituting these annotation sets into the
recompilation tests in Section 8 and refactoring the equations yields the
following recompilation tests:

(a) (ALIASO.D(P) – ALIAS~EW(p)) n ALIASAPPEARS(P) # 0,

(b) (MODo~~(e) – MOD~EW(e)) n APPEARS(P) # 0, for any call site e in p,

(c) (REFoLD(e) – REFNEW(e)) f’ APPEARS(P) # 0, for any call site e in p, and

(d) {(n, v) G (CONSTANTS~EW(p) – CONSTANTSo.~(p)) I n ● APPEARS(p)} # 0.

Note that refactoring eliminates the need to instantiate Wereconstcmt( p).
It does not seem reasonable to examine techniques for constructing more

precise versions of these sets. That would require the compiler to consider
each interprocedural fact and determine whether or not there existed an
optimizing transformation that the fact prevented. We believe that this type
of analysis would be both difficult to implement and expensive to execute.

8.2 Practical Application

Whenever recompilation analysis indicates that a procedure must be recom-
piled for correctness, the compilation system will recompile it. Unfortunately,
deciding to recompile for better optimization is not as simple a choice. First,
the compiler may not be able to capitalize on the changed interprocedural
sets—the optimization might have been prevented by facts other than the
one just changed. Second, even if the optimization can be done, the run-time
improvement obtained may not justify the cost of recompilation, particularly
if the procedure is large. On the other hand, the changed information might
make a major difference—for example, if it exposed a substantial amount of
parallelism.

Before we can construct a practical compiler that capitalizes on tests for
improved optimization, we need reasonable estimators that can predict run-
time improvement as a function of changes to interprocedural facts, Until
such an estimator is available, recompiling for improvement is almost cer-
tainly a hit-or-miss proposition. The tests that we have presented in this
section can be used to tell the compiler which procedures are candidates for
such analysis, but they cannot, by themselves, predict the results of recompil-
ing.

9. SUMMARY AND CONCLUSIONS

Compiling a program in the presence of interprocedural information intro-
duces dependence between its procedures that complicate the question of
what to recompile when a change is made in the program. In the absence of
information about these dependence, all procedures in the program must be
recompiled whenever a change is made to any one of them. This paper
describes a general framework, based upon annotation sets, for reducing the
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number of unnecessary recompilation required after a change. Within this
framework, several methods for computing the annotation sets have been
presented. These methods differ in the amount of work required and the
precision of the resulting recompilation analysis. The fundamental tradeoff to
be evaluated is compilation time versus number of spurious recompilation.
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